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An algorithm is proposed to numerically solve coefficient inverse problems of heat conduction accounting for 
inequalities and equalities imposed on the sought functions. 

The efficiency of computational algorithms for solving incorrect inverse problems of heat transfer is largely depen- 
dent on the possibility of taking into account the available a priori information on the sought functions [1, 2]. Taking, as a 
case in point, the solution of a coefficient inverse problem of heat conduction, the current study analyzes iterational computa- 
tional algorithms allowing for such a priori known properties of the temperature-dependent sought functions as their positive- 

ness and specified values of these functions at certain values of the argument. The consideration of a priori information of 
this kind necessitates the numerical solution of extremal problems with imposed inequalities or equalities. 

We examine a one-dimensional heat transfer process, whose mathematical model has the form of a boundary-value 
problem for a homogeneous quasi-linear heat conduction equation 

C(T) OTo___..~= O'-'~O (L(T) O-~x ),  O < x < t ,  0 . < ~ m ;  (1) 

r (x, 0) = To (x), 0 ~< x ~< t; (2) 

r (T (0, "0) OT (0, "~) + [~IT C0, ~) = qt (z); (3) 
Ox 

~x2L (T (b, T)) OT (l, z) ! [3~T (l, z) = % (x), (4) 
Ox 

where oq, /31, c~2, and /~2 are parameters, which can be used to analyze boundary conditions of the first, second, or third 
kind. Let, at a certain number N of spatial points with coordinates x = Xi, i = 1, lq, the time dependences of the tempera- 

ture be measured 

Tmea(Xi, T)=  [i(T), i =  1, N. (5) 

The coefficient inverse problem of heat conduction consists of determining the functions C(T) or/and X(T) from conditions 
(1)-(5). It is assumed in this case that the type of boundary conditions (3) and (4) as well as the number of heat sensors N 
satisfy the conditions assuring uniqueness of the analyzed inverse problem (see, for example, [3, 4]). 

For simplicity of the subsequent presentation we consider the case of determining one characteristic X(T). Extending 
the analyzed algorithms to multiparametric inverse problems does not present any considerable difficulties, although it 

involves more cumbersome calculations. 
In constructing the iterational algorithms to solve the coefficient inverse problems, wherein the sought characteristics 

are functions of the temperature, parametrization of unknown functions must be employed. For example, the temperature 
dependence of the thermal conductivity may be written approximately in the form 
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(7") = Z phcph (T) ~ < p, tp ) ,  T 6 [a b], (6) 

where p = [Pl, P2 . . . . .  pro] T is the parametric vector; p E Rm; R m is the m-dimensional Euclidean space; ~ = [~1(T), 
~2(T), ..., ~om(T)]T is the vector of the given basic functions; (., .) is the scalar product; and a and b are the minimal and the 

maximal values of the temperature, respectively. 
The mathematical model (1)-(4) at the prescribed characteristic allows computation of the temperature at the points 

where the heat sensors are installed in accordance with the measurement procedure (5). Thereby X(T) is transformed into the 
vector function f = {fi0"), i = 1, N} resulting from the measurements. In approximation (7), the parametric vector ~ is 
sought. In this case, using the condition of equality of the computed and measured temperatures, the inverse problem may be 

presented as an operator equation 

Ap=f, pER ~, fEF, (7) 

where the operator A is constructed on the basis of the model (1)-(4) taking the measurement procedure (5) into account; and 
F is the space of the measured functions, for which the space I_~ of the functions with an integrable square is generally 

utilized. 
The characteristics sought and, hence, the basic functions ~k(T), k = 1, m, in the parametric presentation of the 

form (6) must satisfy definite smoothness requirements. These requirements ensue from the conditions of differentiability of 
a residual functional [2]. For example, the temperature dependence of the thermal conductivity X(T) must be a twice continu- 
ously differentiable function. Continuity of the first derivative is essential for the volumetric specific heat C(T). Therefore, 
the basic functions ~Ok(T), k = 1, m, should be chosen with regard to the indicated requirements. The smoothness require- 
ments are fulfilled, in particular, by cubic B-splines [5]. 

A salient feature of the inverse problems of heat transfer is their incorrectness. This feature most often manifests 

itself in the fact that minor errors on the right side of Eq. (7) may lead to great deviations in the solution. On conversion to 
the finite-dimensional approximation (6) the inverse operator A -1 in Eq. (7) becomes bounded but the inverse problem 
remains poorly conditioned. Special regularizing methods and algorithms [6] are needed to solve the incorrect inverse 

problems. 
An iteration regularization method [2] proved to be highly efficient in solving various inverse problems of heat 

transfer. In this method an iteration sequence, minimizing the residual functional, is constructed to solve the inverse problem 
of the form (7) 

N Era 

S (p) = t [ A p - -  fIJ~ = ~ S [T (Xi, x) --/~, (.~)]2 dg. (8) 
i = l  0 

Here, use is made of gradient methods of first-order optimization. Successive approximations are constructed by the formula 

~,+l = ~, q_ ?,~(2ip(,)), s = 0, 1 . . . . .  s*, (9) 

where s is the iteration number, 3'1 is the descent parameter, Jp ' is the gradient of the functional (2.1.11) calculated in the 
space R m, G(J') is the vector characterizing the employed optimization method, pO is the initial approximation specified a 
priori, and s* is the number of the last iteration determined during the solution of the problem from the regularizing residual 
condition 

J (p) ~_ ~t~ (10) 

(~2 is the prescribed measurement error computed in the metric of the space F). The descent parameter ")'s is obtained from 
the condition 

?o = Arg min J (p~ q- ~G (7~('))) v,>o (11) 

- '  is calculated using the solution of a boundary- by any familiar method, for example, "golden section" [7]. The gradient J p 
value problem for a conjugate variable [2]. 
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The algorithms to solve the coefficient inverse problems must be constructed by taking into account limitations 
ensuing from physical considerations 

~,(T)>O,. TEta, b]. (12) 

However, it is generally assumed that, in the course of minimizing the residual functional (8), the solution satisfies all 
possible restrictions, and unconditional optimization methods are used. 

The practice of solving the coefficient inverse problems indicates that, during the iterational refinement of the sought 

characteristics, condition (12) may be violated. This leads to instability of the direct problem, and the solution of the analyzed 
inverse problem is unfeasible. In such a situation, another initial approximation to the sought functions is usually chosen, and 
computations are repeated. This technique, however, may also lead to the violation of constraints (12). As a result, the 
solution of the inverse problem turns into a fairly arduous investigation, in which the researcher's intuition and subjectivity 

reveal themselves actively. 
To eliminate the above-mentioned factors and to construct universal computational algorithms for solving inverse 

problems, minimizing the residual functional (8), conditional optimization methods should be utilized, for example, a method 
of projection of conjugate gradients. In this case, successive approximations are constructed by the formula 

~s+ ,=  PwCo~ q_ 79 (-J~(~), (13) 

where Pw is the projection operator on a set of admissible solutions W, which is constructed with consideration of constraints 

(12). 
A projection Wo of the assigned vector ~ on the set W C R m is determined from the condition [7] 

l i p - -  woll 2 = inf ~ (w), ~ (~) -- tip --  wll z, (14) 

where U.| is the norm in the space R TM. In the extremal problem (14), it is necessary to formulate conditions under which 
the vector w is an element of the set W. Taking account of constraints (12), we present W as a closed set 

/71 

117 = {u (T) = ( w, r ) = ~] wkq~h (r) ~> ~, T E [a, b]}, (15) 
h ~ l  

here & > 0 is the prescribed quantity and ~Ok(T), k = 1, m, are the basic functions of the approximation. Constraints on the 

vector qe are formulated proceeding from the fact that condition (15) is fulfilled on each interval of the approximation. 
However, such an approach results in a system of nonlinear constraints, and the solution of the extremal problem (14) 

necessitates the employment of appropriate methods of conditional optimization [8], which are extremely complicated and 

laborious, as far as computation is concerned. 
A considerable simplification of the algorithm of projecting on the set of admissible solutions may be provided by 

introducing a system of linear constraints on the vector q~. To construct such an approximate algorithm, we introduce on the 

interval [a, b] the net 

w={T~=a+( i - -1 )h ,  i = l ,  ..., n, h=(b--a)(n--1), n>m}, (16) 

where n is the prescribed number. At each node of the net (16), we require that condition (15) be fulfilled. As a result, we 

obtain the system of linear constraints 

~ w~q~ (Ti) = ~z, i = l , .n.  (17) 

In matrix notation, constraints (17) may be represented as 

D ~ = ~ ,  (18) 

where D is an m • n matrix, whose elements are equal to dk, i = r and c~ is an assigned vector of dimension n > m, 
wherein ot i = ~ ,  i = 1, n. Then the extremal problem (14) converts to the form 
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q~ (~o )  = inf lip - -  r*ll ~. 
o~>~ (19) 

Denoting further p - ~ = ~, C = - D ,  and/~ -- & = Dp we obtain 

xp (~o) = inf l~ll 2. 
c7>~ (20) 

Thus, the construction of the projection on a set of admissible solutions in the approximate formulation is reduced to the 
search for a vector of the minimal norm under linear inequalities. This is a well studied problem, and effective computational 

algorithms [9] have been worked out to solve it. 
For a practical realization of the outlined projection algorithm it is necessary to specify the parameters of the 

additional grid (16), in particular, the number of nodes n. In this algorithm, the solution of the extremal problem (14) using 

a least-square method is ensured by the fulfillment of the relationship n > m. The computational experiments performed 

show that for solution of the problem (20), it is usually sufficient to satisfy the condition n > (5-10) m. 

The quality of the approximate solution of incorrect inverse problems is dependent in many respects on the complete- 

ness of taking into account the entire available a priori information on the sought characteristics. The allowance for such 

information narrows a set of admissible solutions for the inverse problem and, as a consequence, improves certainty and 

accuracy of the results [1, 2]. 
As the a priori information, we may prescribe, specifically, values of the sought function X(T) at certain temperatures 

~.(T~)=~q, l =  1, L. (21) 

For example, in determining the thermal conductivity of high-temperature materials, the value of this characteristic at room 

temperature k(To) =/-to may be known. 
The consideration of a priori information in the form of the constraints-equalities of the type (21) lies in eliminating 

a part of the unknown parameters from the approximating relation (6). As a result, the dimension o f  the sought vector is 

reduced, and the system of basic functions is modified. The restrictions on the vector of coefficients in expression (6) are 

written in the form of a system of linear algebraic equations 

rn  

X P h % ( T I ) = P 4 '  l =  1, L (22) 
i z = l  

whence, for example, using the Gauss elimination method with the choice of the basic element of L elements of vector p, the 

right sides /z e are also expressed in terms of the remaining elements of the vector. After manipulation the approximating 

expression takes the form 
n t  

(T) = ~ ph*~ (73, 
k = l  (23)  

where L elements of vector p are known, and ffk(T), k = 1, m, is the transformed system of basic functions. If information 

on the values of sought derivative functions at a certain number of points of the interval [a, b] is available, it is accounted for 

in a similar way. 

The algorithm presented is realized in the form of a package of computer programs. Here, relevant boundary-value 
problems are solved numerically using a finite-difference method. The program package was de-bugged and tested by solving 

model inverse problems numerically. The results confirmed the high efficiency of the proposed algorithm. 

The algorithm devised for solving the inverse problem of heat conduction taking a priori information on values of the 

sought functions into consideration was utilized in processing and analyzing experimental data on the determination of the 

effective thermal conductivity for a composite material. 

For the experimental study of the material heating processes, a radiation heating bench was used. The nonsteady 
heating process was controlled automatically by a designated surface temperature. 

Parameters of the material heating were measured with the aid of specially designed sensors, allowing determination 
of the temperature as a function of =time at several inner points of the material sample. Based on the analysis of existing 
methods to install thermocouples into the considered material, the current study adopted the following sensor design. The 
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TABLE 1. Temperature Dependence of Volumetric Ther- 
mal Conductivity of the Material 

7",It 

C .  10-a, J/(m3-K) 
273 373 I 473 I 573 
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Fig. 1 Fig. 2 

Fig. 1. Determination of the thermal conductivity: 1) limitation; 2) initial approximation; 3, 4) calculated 

results on the 2-nd iteration before and after the projection; 5) calculated result on the 10-th iteration. 

Fig. 2. Comparison between experimental and calculated temperatures: 1) experiment; 2, 3) calculated 

temperature on the 2-nd iteration before and after the projection; 4) calculated temperature on the 10-th 
iteration. 

composite material sample was located on a metal substrate fabricated from an AMG-6 alloy of thickness 1 mm and dimen- 
sions 70 x 70 mm. The thickness of the studied material was as large as 5 mm. Butt-welded H-shaped tungsten-rhenium 

thermocouples were mounted on the material surface through borings made preliminarily in the substrate. A Chromel-Alumel 
thermocouple was installed on the substrate surface. 

The thermal conductivity was determined in the unilateral heating of the sample. The inner surface was thermally 

insulated with the help of a thermal-insulation material. Indications of the thermocouples mounted on the heated surface and 

the thermal insulation condition on the inner surface were employed as boundary conditions of the first and second kind, 

respectively. At the initial time the sample temperature was constant and equal to 289 K. Table 1 presents the specified 

temperature dependence of the volumetric thermal conductivity of the material. 

The duration of the sample heating was 60 sec. Prior to processing the experimental data, computational experiments 

were carried out which revealed optimal parameters of the difference grid, viz., rt r • n x = 50 x 50. It was also established 
that, for the examined experiments, it is expedient to approximate the unknown relation X(T) by the B-spline with "natural" 

boundary conditions (X"(a) = X"(b) = 0) and with four splitting intervals of the approximation region of the sought function 

(m = 5). 

During the solution of the inverse problem [the initial approximation was taken to be equal to X ~ = 0.4 W/(m.K)], 

in the 2nd iteration the sought function on the interval [621, 1182 K] assumed negative values, which is shown in Fig. 1. 

Here, the iteration process was terminated because the direct problem of heat conduction with negative coefficients cannot be 
solved. After the procedure of projecting the derived relation X(T) on the half-plane h -> 0.02 (see Fig. 1) has been accom- 

plished, it is possible to continue the iteration process until the condition of halt from the residual, according to the iteration 

regularization principle [2], is fulfilled. The relevant calculated temperatures and the relation X(T) to be determined are also 

given in Figs. 2 and 1. 

It should be noted that negative values of X(T) also appear during iterations with other initial approximations. Thus, 
for example, at X ~ = 0.15 W/(m-K), the problem of negative values of X(T) arises on the 3rd iteration as well. 

96 



The investigations performed show that in some cases it is impossible to avoid the computation of negative values of 
~,(T) in the iteration process regardless of initial approximations. The only way out here is taking into account the a priori 
information on the nonnegativeness of the characteristic to be determined. The proposed algorithm offers the prospects of the 
efficient solution for the inverse problem in situations of such kind. 

NOTATION 

T, temperature; T, time; x, spatial coordinate; f, additional temperature measurements; C, volumetric specific heat; 
;~, thermal conductivity; q, external thermal effect; J, minimized functional; % descent step; 6 2, integral error of measure- 
ments; n, number of steps of the difference net. 
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